Hiển thị các bài đăng có nhãn ĐIỆN TỬ. Hiển thị tất cả bài đăng
Hiển thị các bài đăng có nhãn ĐIỆN TỬ. Hiển thị tất cả bài đăng

THƯƠNG MẠI ĐIỆN TỬ

By // Không có nhận xét nào:
website bán hàng trực tuyến đột phá ý tưởng... Phương châm của chúng tôi là tạo ra nhiều cơ hội cho các doanh nghiệp sở hữu một website bán hàng trực tuyến với chi phí thấp nhất và tạo ra môi trường mua sắm trực tuyến đơn giản và rất an toàn trên mạng. Chúng tôi tự hào sẽ là nơi mang đến cho doanh nghiệp nhiều mẫu giao diện website phong phú và đa dạng, quản lý website đơn giản, tiện ích, dễ sử dụng. Website TMĐT mua sắm an toàn, tiện lợi.
Thương mại điện tử, hay còn gọi là e-commercee-comm hay EC, là sự mua bán sản phẩm hay dịch vụ trên các hệ thống điện tử như Internet và các mạng máy tính.[1][2] Thương mại điện tử dựa trên một số công nghệ như chuyển tiền điện tử,quản lý chuỗi dây chuyền cung ứngtiếp thị Internetquá trình giao dịch trực tuyến,trao đổi dữ liệu điện tử (EDI), các hệ thống quản lý hàng tồn kho, và các hệ thống tự động thu thập dữ liệu. Thương mại điện tử hiện đại thường sử dụng mạng World Wide Web là một điểm ít nhất phải có trong chu trình giao dịch, mặc dù nó có thể bao gồm một phạm vi lớn hơn về mặt công nghệ như email, các thiết bị di độngcũng như điện thoại.

Thương mại điện tử thông thường được xem ở các khía cạnh của kinh doanh điện tử (e-business). Nó cũng bao gồm việc trao đổi dữ liệu tạo điều kiện thuận lợi cho các nguồn tài chính và các khía cạnh thanh toán của việc giao dịch kinh doanh.[2]
E-commerce có thể được phân chia thành:

Khi nói về khái niệm thương mại điện tử (E-Commerce), nhiều người nhầm lẫn với khái niệm của Kinh doanh điện tử (E-Business).[16] Tuy nhiên, thương mại điện tử đôi khi được xem là tập con của kinh doanh điện tử.[17] Thương mại điện tử chú trọng đến việc mua bán trực tuyến (tập trung bên ngoài), trong khi đó kinh doanh điện tử là việc sử dụng Internet và các công nghệ trực tuyến tạo ra quá trình hoạt động kinh doanh hiệu quả dù có hay không có lợi nhuận, vì vậy tăng lợi ích với khách hàng(tập trung bên trong).[18][19]
Một số khái niệm thương mại điện tử được định nghĩa bởi các tổ chức uy tín thế giớinhư sau:
  • Theo Tổ chức Thương mại thế giới (WTO), "Thương mại điện tử bao gồm việc sản xuất, quảng cáo, bán hàng và phân phối sản phẩm được mua bán và thanh toán trên mạng Internet, nhưng được giao nhận một cách hữu hình, cả các sản phẩm giao nhận cũng như những thông tin số hoá thông qua mạng Internet".[20]
  • Theo Ủy ban Thương mại điện tử của Tổ chức Hợp tác kinh tế châu Á - Thái Bình Dương (APEC) định nghĩa: "Thương mại điện tử liên quan đến các giao dịch thương mại trao đổi hàng hóa và dịch vụ giữa các nhóm (cá nhân) mang tính điện tử chủ yếu thông qua các hệ thống có nền tảng dựa trên Internet." [21] Các kỹ thuật thông tin liên lạc có thể là emailEDIInternet và Extranet có thể được dùng để hỗ trợ thương mại điện tử.
  • Theo Ủy ban châu Âu"Thương mại điện tử có thể định nghĩa chung là sự mua bán, trao đổi hàng hóa hay dịch vụ giữa các doanh nghiệp, gia đình, cá nhân, tổ chức tư nhân bằng các giao dịch điện tử thông qua mạng Internet hay các mạng máy tính trung gian (thông tin liên lạc trực tuyến). Thật ngữ bao gồm việc đặt hàng và dịch thông qua mạng máy tính, nhưng thanh toán và quá trình vận chuyển hàng hay dịch vụ cuối cùng có thể thực hiện trực tuyến hoặc bằng phương pháp thủ công."[22]
Tóm lại, thương mại điện tử chỉ xảy ra trong môi trường kinh doanh mạng Internet và các phương tiện điện tử giữa các nhóm (cá nhân) với nhau thông qua các công cụ, kỹ thuật và công nghệ điện tử.[23] Ngoài ra, theo nghiên cứu tại đại học Texas, các học giả cho rằng thương mại điện tử và kinh doanh điện tử đều bị bao hàm bởi Nền kinh tế Internet (Internet economy[24]

Hướng dẫn đo bằng đồng hồ vạn năng

By // Không có nhận xét nào:
 I - Hướng dẫn đo bằng đồng hồ (VOM)    1) Giới thiệu về đồng hồ vạn năng ( VOM)
   Đồng hồ vạn năng ( VOM ) là thiết bị đo không thể thiếu được với bất kỳ một kỹ thuật viên điện tử nào, đồng hồ vạn năng có 4 chức năng chính là Đo điện trở, đo điện áp DC, đo điện áp AC và đo dòng điện.
     Ưu điểm của đồng hồ là đo nhanh, kiểm tra được nhiều loại linh kiện, thấy được sự phóng nạp của tụ điện , tuy nhiên đồng hồ này có  hạn chế về độ chính xác và có trở kháng thấp khoảng 20K/Vol do vây khi đo vào các mạch cho dòng thấp chúng bị sụt áp.
   2)  Hướng dẫn đo điện áp xoay chiều.
Sử dụng đồng hồ vạn năng đo áp AC
      Khi đo điện áp xoay chiều ta chuyển thang đo về các thang AC, để thang AC cao hơn điện áp cần đo một nấc, Ví dụ nếu đo điện áp AC220V ta để thang AC 250V, nếu ta để thang thấp hơn điện áp cần đo thì đồng hồ báo kịch kim, nếu để thanh quá cao thì kim báo thiếu chính xác.
    * Chú ý - chú ý :
    Tuyết đối không để thang đo điện trở hay thang đo dòng điện khi đo vào điện áp xoay chiều => Nếu nhầm đồng hồ sẽ bị hỏng ngay lập tức !
Để nhầm thang đo dòng điện, đo vào
nguồn AC => sẽ hỏng đồng hồ
Để nhầm thang đo điện trở, đo vào nguồn AC
=> sẽ hỏng các điện trở trong đồng hồ
   * Nếu để thang đo áp DC mà đo vào nguồn AC thì kim đồng hồ không báo , nhưng đồng hồ không ảnh hưởng .
Để thang DC đo áp AC đồng hồ không lên kim
tuy nhiên đồng hồ không hỏng

     3) Hướng dẫn đo điện áp một chiều DC bằng đồng hồ vạn năng.
     Khi đo điện áp một chiều DC, ta nhớ chuyển thang đo về thang DC,  khi đo ta đặt que đỏ vào cực dương (+) nguồn, que đen vào cực âm (-) nguồn, để thang đo cao hơn điện áp cần đo một nấc. Ví dụ nếu đo áp DC 110V ta để thang DC 250V, trường hợp để thang đo thấp hơn điện áp cần đo => kim báo kịch kim, trường hợp để thang quá cao => kim báo thiếu chính xác.
Dùng đồng hồ vạn năng đo điện áp một chiều DC
  * Trường hợp để sai thang đo :
 Nếu ta để sai thang đo, đo áp một chiều nhưng ta để đồng hồ thang xoay chiều thì đồng hồ sẽ báo sai, thông thường  giá trị báo sai cao gấp 2 lần giá trị thực của điện áp DC, tuy nhiên đồng hồ cũng không bị hỏng .
Để sai thang đo khi đo điện áp một chiều => báo sai giá trị.
   * Trường hợp để nhầm thang đo
 Chú ý - chú ý : Tuyệt đối không để nhầm đồng hồ vào thang đo dòng điện hoặc thang đo điện trở khi ta đo điện áp một chiều (DC) , nếu nhầm đồng hồ sẽ bị hỏng ngay !!
Trường hợp để nhầm thang đo dòng điện
khi đo điện áp DC => đồng hồ sẽ bị hỏng !
Trường hợp để nhầm thang đo điện trở khi đo điện
áp DC => đồng hồ sẽ bị hỏng các điện trở bên trong!

    4) Hướng dẫn đo điện trở và trở kháng.
 Với thang đo điện trở của đồng hồ vạn năng ta có thể đo được rất nhiều thứ.
  • Đo kiểm tra giá trị của điện trở
  • Đo kiểm tra sự thông mạch của một đoạn dây dẫn
  • Đo kiểm tra sự thông mạch của một đoạn mạch in
  • Đo kiểm tra các cuộn dây biến áp có thông mạch không
  • Đo kiểm tra sự phóng nạp của tụ điện
  • Đo kiểm tra xem tụ có bị dò, bị chập không.
  • Đo kiểm tra trở kháng của một mạch điện
  • Đo kiểm tra đi ốt và bóng bán dẫn.
     *  Để sử dụng được các thang đo này đồng hồ phải được lắp 2 Pịn tiểu 1,5V bên trong, để xử dụng các thang đo 1Kohm hoặc 10Kohm ta phải lắp Pin 9V.
       4.1 - Đo điện trở :

 Đo kiểm tra điện trở bằng đồng hồ vạn năng
  Để đo tri số điện trở ta thực hiện theo các bước sau :
  • Bước 1 :  Để thang đồng hồ về các thang đo trở, nếu điện trở nhỏ thì để thang x1 ohm hoặc x10 ohm, nếu điện trở lớn thì để thang x1Kohm hoặc 10Kohm. => sau đó chập hai que đo và chỉnh triết áo để kim đồng hồ báo vị trí  0 ohm.
  • Bước 2 : Chuẩn bị đo .
  • Bước 3 : Đặt que đo vào hai đầu điện trở, đọc trị số trên thang đo , Giá trị đo được = chỉ số thang đo Xthang đo Ví dụ : nếu để thang x 100 ohm và chỉ số báo là 27 thì giá trị là = 100 x 27 = 2700 ohm = 2,7 K ohm
  • Bước 4 : Nếu ta để thang đo quá cao thì kim chỉ lên một chút , như vậy đọc trị số sẽ không chính xác.
  • Bước 5 : Nếu ta để thang đo quá thấp , kim lên quá nhiều, và đọc trị số cũng không chính xác.
  • Khi đo điện trở ta chọn thang đo sao cho kim báo gần vị trí giữa vạch chỉ số sẽ cho độ chính xác cao nhất.
    4.2 - Dùng thang điện trở để đo kiểm tra tụ điện
       Ta có thể dùng thang điện trở để kiểm tra độ phóng nạp và hư hỏng của tụ điện , khi đo tụ điện , nếu là tụ gốm ta dùng thang đo x1K ohm hoặc 10K ohm, nếu là tụ hoá ta dùng thang x 1 ohm hoặc x 10 ohm.
Dùng thang x 1K ohm để kiểm tra tụ gốm
  Phép đo tụ gốm trên cho ta biết :
  • Tụ C1 còn tốt => kim phóng nạp khi ta đo
  • Tụ C2 bị dò => lên kim nhưng không trở về vị trí cũ
  • Tụ C3 bị chập => kim đồng hồ lên = 0 ohm và không trở về.
Dùng thang x 10 ohm để kiểm tra tụ hoá
  Ở trên là phép đo kiểm tra các tụ hoá, tụ hoá rất ít khi bị dò hoặc chập mà chủ yếu là bị khô ( giảm điện dung) khi đo tụ hoá để biết chính xác mức độ hỏng của tụ ta cần đo so sánh với một tụ mới có cùng điện dung.
  • Ở trên là phép đo so sánh hai tụ hoá cùng điện dung, trong đó tụ C1 là tụ mới còn C2 là tụ cũ, ta thấy tụ C2 có độ phóng nạp yếu hơn tụ C1 => chứng tỏ tụ C2 bị khô ( giảm điện dung )
  • Chú ý khi đo tụ phóng nạp, ta phải đảo chiều que đo vài lần để xem độ phóng nạp.

    5 - Hướng dẫn đo dòng điện bằng đồng hồ vạn năng.
   Cách 1 :  Dùng thang đo dòng
     Để đo dòng điện bằng đồng hồ vạn năng, ta đo đồng hồ nối tiếp với tải tiêu thụ và chú ý là chỉ đo được dòng điện nhỏ hơn giá trị của thang đo cho phép, ta thực hiện theo các bước sau
  • Bươc 1 : Đặt đồng hồ vào thang đo dòng cao nhất .
  • Bước 2: Đặt que đồng hồ nối tiếp với tải, que đỏ về chiều dương, que đen về chiều âm .
  • Nếu kim lên thấp quá thì giảm thang đo
  • Nếu kim lên kịch kim thì tăng thang đo, nếu thang đo đã để thang cao nhất thì đồng hồ không đo được dòng điện này.
  • Chỉ số kim báo sẽ cho ta biết giá trị dòng điện .
  Cách 2 : Dùng thang đo áp DC
    Ta có thể đo dòng điện qua tải bằng cách đo sụt áp trên điện trở hạn dòng mắc nối với tải, điện áp đo được chia cho giá trị trở hạn dòng sẽ cho biết giá trị dòng điện, phương pháp này có thể đo được các dòng điện lớn hơn khả năng cho phép của đồng hồ và đồng hồ cũmg an toàn hơn.
  Cách đọc trị số dòng điện và điện áp khi đo như thế nào ?
   * Đọc giá trị điện áp AC và DC    Khi đo điện áp DC thì ta đọc giá trị trên vạch chỉ số DCV.A
  • Nếu ta để thang đo 250V thì ta đọc trên vạch có giá trị cao nhất là 250, tương tự để thang 10V thì đọc trên vạch có giá trị cao nhất là 10. trường hợp để thang 1000V nhưng không có vạch nào ghi cho giá trị 1000 thì đọc trên vạch giá trị Max = 10, giá trị đo được nhân với 100 lần 
  • Khi đo điện áp AC thì đọc giá trị cũng tương tự. đọc trên vạch AC.10V, nếu đo ở thang có giá trị khác thì ta tính theo tỷ lệ. Ví dụ nếu để thang 250V thì mỗi chỉ số của vạch 10 số tương đương với 25V.
  • Khi đo dòng điện thì đọc giá trị tương tự đọc giá trị khi đo điện áp



 II - Hướng dẫn sử dụng đồng hồ Digital   1) Giới thiệu về đồng hồ số DIGITAL
    Đồng hồ số Digital có một số ưu điểm  so với đồng hồ cơ khí, đó là độ chính xác cao hơn, trở kháng của đồng hồ cao hơn do đó không gây sụt áp khi đo vào dòng điện yếu, đo được tần số điện xoay chiều, tuy nhiên đồng hồ này có một số nhược điểm là chạy bằng mạch điện tử lên hay hỏng, khó nhìn kết quả trong trường hợp cần đo nhanh, không đo được độ phóng nạp của tụ.
Đồng hồ vạn năng số Digital
     Hướng dẫn sử dụng :
     2) - Đo điện áp một chiều ( hoặc xoay chiều )
Đặt đồng hồ vào thang đo điện áp DC hoặc AC
  • Để que đỏ đồng hồ vào lỗ cắm " VΩ mA" que đen vào lỗ cắm "COM"
  • Bấm nút DC/AC để chọn thang đo là DC nếu đo áp một chiều hoặc AC nếu đo áp xoay chiều.
  • Xoay chuyển mạch về vị trí "V" hãy để thang đo cao nhất nếu chưa biết rõ điện áp, nếu giá trị báo dạng thập phân thì ta giảm thang đo sau.
  • Đặt thang đo vào điện áp cần đo và đọc giá trị trên màn hình LCD của đồng hồ.
  • Nếu đặt ngược que đo(với điện một chiều) đồng hồ sẽ báo giá trị âm (-)
     3) - Đo dòng điện DC (AC)
  • Chuyển que đổ đồng hồ về thang mA nếu đo dòng nhỏ, hoặc 20A nếu đo dòng lớn.
  • Xoay chuyển mạch về vị trí "A"
  • Bấm nút DC/AC để chọn đo dòng một chiều DC hay xoay chiều AC
  • Đặt que đo nối tiếp với mạch cần đo
  • Đọc giá trị hiển thị trên màn hình.
     4) - Đo điện trở
  • Trả lại vị trí dây cắm như khi đo điện áp .
  • Xoay chuyển mạch về vị trí đo " Ω ", nếu chưa biết giá trị điện trở thì chọn thang đo cao nhất , nếu kết quả là số thập phân thì ta giảm xuống.
  • Đặt que đo vào hai đầu điện trở.
  • Đọc giá trị trên màn hình.
  • Chức năng đo điện trở còn có thể đo sự thông mạch, giả sử đo một đoạn dây dẫn bằng thang đo trở,  nếu thông mạch thì đồng hồ phát ra tiến kêu
      5) - Đo  tần số
  • Xoay chuyển mạch về vị trí  "FREQ" hoặc " Hz"
  • Để thang đo như khi đo điện áp .
  • Đặt que đo vào các điểm cần đo
  • Đọc trị số trên màn hình.
     6) - Đo  Logic
  • Đo Logic là đo vào các mạch số ( Digital) hoặc đo các chân lện của vi xử lý, đo Logic thực chất là đo trạng thái có điện - Ký hiệu "1" hay không có điện "0", cách đo như sau:
  • Xoay chuyển mạch về vị trí   "LOGIC"
  • Đặt que đỏ vào vị trí cần đo que đen vào mass
  • Màn hình chỉ   "▲" là báo mức logic ở mức cao, chỉ "▼" là báo logic ở mức thấp
       7) - Đo  các chức năng khác
  • Đồng hồ vạn năng số Digital còn một số chức năng đo khác như Đo đi ốt,  Đo tụ điện, Đo Transistor nhưng nếu ta đo các linh kiện trên, ta lên dùng đồng hồ cơ khí sẽ cho kết quả tốt hơn và đo nhanh hơn

Điện tử cơ bản

By // Không có nhận xét nào:

 Điện tử cơ bản/Các linh kiện điện tử cơ bản


Các linh kiện điện tử cơ bản
Như đã đề cập trong phần trước, các linh kiện điện tử cơ bản trong một mạch điện tử bao gồm:điện trởtụ điệncuộn cảm. Do đây là các linh kiện cơ bản nên việc đầu tiên khi làm quen với các linh kiện này đó là cách nhận biết các loại linh kiện khác nhau, đồng thời đọc được giá trị các loại linh kiện khác nhau.

Phân loại điện trở và cách đọc điện trở

Như đã đề cập,nói một cách nôm na, điện trở đặc trưng cho tính chất cản trở dòng điện. Chính vì thế, khi sử dụng điện trở cho một mạch điện thì một phần năng lượng điện sẽ bị tiêu hao để duy trì mức độ chuyển dời của dòng điện. Nói một cách khác thì khi điện trở càng lớn thì dòng điện đi qua càng nhỏ và ngược lại khi điện trở nhỏ thì dòng điện dễ dàng được truyền qua.Khi dòng điện cường độ I chạy qua một vật có điện trở R, điện năng được chuyển thành nhiệt năng với công suất theo phương trình sau:
P = I2.R
trong đó:
P là công suất, đo theo W
I là cường độ dòng điện, đo bằng A
R là điện trở, đo theo Ω
Chính vì lý do này, khi phân loại điện trở, người ta thường dựa vào công suất mà phân loại điện trở. Và theo cách phân loại dựa trên công suất, thì điện trở thường được chia làm 3 loại:
- Điện trở công suất nhỏ
- Điện trở công suất trung bình
- Điện trở công suất lớn.
Tuy nhiên, do ứng dụng thực tế và do cấu tạo riêng của các vật chất tạo nên điện trở nên thông thường, điện trở được chia thành 2 loại:
- Điện trở: là các loại điện trở có công suất trung bình và nhỏ hay là các điện trở chỉ cho phép các dòng điện nhỏ đi qua.
- Điện trở công suất: là các điện trở dùng trong các mạch điện tử có dòng điện lớn đi qua hay nói cách khác, các điện trở này khi mạch hoạt động sẽ tạo ra một lượng nhiệt năng khá lớn. Chính vì thế, chúng được cấu tạo nên từ các vật liệu chịu nhiệt.
Để tiện cho quá trình theo dõi trong tài liệu này, các khái niệm điện trở và điện trở công suất được sử dụng theo cách phân loại trên.
Cách đọc giá trị các điện trở này thông thường cũng được phân làm 2 cách đọc, tuỳ theo các ký hiệu có trên điện trở. Dưới đây là hình về cách đọc điện trở theo vạch màu trên điện trở.
Resistorcode.jpg
Đối với các điện trở có giá trị được định nghĩa theo vạch màu thì chúng ta có 3 loại điện trở: Điện trở 4 vạch màu và điện trở 5 vạch màu và 6 vạch màu. Loại điện trở 4 vạch màu và 5 vạch màu được chỉ ra trên hình vẽ. Khi đọc các giá trị điện trở 5 vạch màu và 6 vạch màu thì chúng ta cần phải để ý một chút vì có sự khác nhau một chút về các giá trị. Tuy nhiên, cách đọc điện trở màu đều dựa trên các giá trị màu sắc được ghi trên điện trở 1 cách tuần tự:
Đối với điện trở 4 vạch màu
- Vạch màu thứ nhất: Chỉ giá trị hàng chục trong giá trị điện trở
- Vạch màu thứ hai: Chỉ giá trị hàng đơn vị trong giá trị điện trở
- Vạch màu thứ ba: Chỉ hệ số nhân với giá trị số mũ của 10 dùng nhân với giá trị điện trở
- Vạch màu thứ 4: Chỉ giá trị sai số của điện trở
Đối với điện trở 5 vạch màu
- Vạch màu thứ nhất: Chỉ giá trị hàng trăm trong giá trị điện trở
- Vạch màu thứ hai: Chỉ giá trị hàng chục trong giá trị điện trở
- Vạch màu thứ ba: Chỉ giá trị hàng đơn vị trong giá trị điện trở
- Vạch màu thứ 4: Chỉ hệ số nhân với giá trị số mũ của 10 dùng nhân với giá trị điện trở
- Vạch màu thứ 5: Chỉ giá trị sai số của điện trở
Ví dụ như trên hình vẽ, điện trở 4 vạch màu ở phía trên có giá trị màu lần lượt là: xanh lá cây/xanh da trời/vàng/nâu sẽ cho ta một giá trị tương ứng như bảng màu lần lượt là 5/6/4/1%. Ghép các giá trị lần lượt ta có 56x104Ω=560kΩ và sai số điện trở là 1%.
Tương tự điện trở 5 vạch màu có các màu lần lượt là: Đỏ/cam/tím/đen/nâu sẽ tương ứng với các giá trị lần lượt là 2/3/7/0/1%. Như vậy giá trị điện trở chính là 237x100=237Ω, sai số 1%.

Phân loại tụ điện và cách đọc tụ điện

Tụ điện theo đúng tên gọi chính là linh kiện có chức năng tích tụ năng lượng điện, nói một cách nôm na. Chúng thường được dùng kết hợp với các điện trở trong các mạch định thời bởi khả năng tích tụ năng lượng điện trong một khoảng thời gian nhất định. Đồng thời tụ điện cũng được sử dụng trong các nguồn điện với chức năng làm giảm độ gợn sóng của nguồn trong các nguồn xoay chiều, hay trong các mạch lọc bởi chức năng của tụ nói một cách đơn giản đó là tụ ngắn mạch (cho dòng điện đi qua) đối với dòng điện xoay chiều và hở mạch đối với dòng điện 1 chiều.
Trong một số các mạch điện đơn giản, để đơn giản hóa trong quá trình tính toán hay thay thế tương đương thì chúng ta thường thay thế một tụ điện bằng một dây dẫn khi có dòng xoay chiều đi qua hay tháo tụ ra khỏi mạch khi có dòng một chiều trong mạch. Điều này khá là cần thiết khi thực hiện tính toán hay xác định các sơ đồ mạch tương đương cho các mạch điện tử thông thường.
Hiện nay, trên thế giới có rất nhiều loại tụ điện khác nhau nhưng về cơ bản, chúng ta có thể chia tụ điện thành hai loại: Tụ có phân cực (có cực xác định) và tụ điện không phân cực (không xác định cực dương âm cụ thể).
Để đặc trưng cho khả năng tích trữ năng lượng điện của tụ điện, người ta đưa ra khái niệm là điện dung của tụ điện. Điện dung càng cao thì khả năng tích trữ năng lượng của tụ điện càng lớn và ngược lại. Giá trị điện dung được đo bằng đơn vị Farad (kí hiệu là F). Giá trị F là rất lớn nên thông thường trong các mạch điện tử, các giá trị tụ chỉ đo bằng các giá trị nhỏ hơn như micro fara (μF), nano Fara (nF) hay picro Fara (pF).
1F=106μF=109nF=1012pF

Tụ hoá


Kí hiệu tụ hoá và hình dạng tụ hoá
Tụ hóa là một loại tụ có phân cực. Chính vì thế khi sử dụng tụ hóa yêu cầu người sử dụng phải cắm đúng chân của tụ điện với điện áp cung cấp. Thông thường, các loại tụ hóa thường có kí hiệu chân cụ thể cho người sử dụng bằng các ký hiệu + hoặc = tương ứng với chân tụ.
Có hai dạng tụ hóa thông thường đó là tụ hóa có chân tại hai đầu trụ tròn của tụ (tụ có ghi 220μF trên hình a) và loại tụ hóa có 2 chân nối ra cùng 1 đầu trụ tròn (tụ có ghi giá trị 10μF trên hình a). Đồng thời trên các tụ hóa, người ta thường ghi kèm giá trị điện áp cực đại mà tụ có thể chịu được. Nếu trường hợp điện áp lớn hơn so với giá trị điện áp trên tụ thì tụ sẽ bị phồng hoặc nổ tụ tùy thuộc vào giá trị điện áp cung cấp. Thông thường, khi chọn các loại tụ hóa này người ta thường chọn các loại tụ có giá trị điện áp lớn hơn các giá trị điện áp đi qua tụ để đảm bảo tụ hoạt động tốt và đảm bảo tuổi thọ của tụ hóa.

Tụ Tantali


Tụ Tantali
Tụ Tantali cũng là loại tụ hóa nhưng có điện áp thấp hơn so với tụ hóa. Chúng khá đắt nhưng nhỏ và chúng được dùng khi yêu cầu về tụ dung lớn nhưng kích thước nhỏ.
Các loại tụ Tantali hiện nay thường ghi rõ trên nó giá trị tụ, điện áp cũng như cực của tụ. Các loại tụ Tantali ngày xưa sử dụng mã màu để phân biệt. Chúng thường có 3 cột màu (biểu diễn giá trị tụ, một cột biểu diễn giá trị điện áp) và một chấm màu đặc trưng cho số các số không sau dấu phẩy tính theo giá trị μF. Chúng cũng dùng mã màu chuẩn cho việc định nghĩa các giá trị nhưng đối với các điểm màu thì điểm màu xám có nghĩa là giá trị tụ nhân với 0,01; trắng nhân 0,1 và đen là nhân 1. Cột màu định nghĩa giá trị điện áp thường nằm ở gần chân của tụ và có các giá trị như sau:

Tụ thường và kí hiệu
vàng=6,3V
Đen= 10V
Xanh lá cây= 16V
Xanh da trời= 20V
Xám= 25V
Trắng= 30V
Hồng= 35V

Tụ không phân cực


Tụ thường
Các loại tụ nhỏ thường không phân cực. Các loại tụ này thường chịu được các điện áp cao mà thông thường là khoảng 50V hay 250V. Các loại tụ không phân cực này có rất nhiều loại và có rất nhiều các hệ thống chuẩn đọc giá trị khác nhau.
Rất nhiều các loại tụ có giá trị nhỏ được ghi thẳng ra ngoài mà không cần có hệ số nhân nào, nhưng cũng có các loại tụ có thêm các giá trị cho hệ số nhân. Ví dụ có các tụ ghi 0.1 có nghĩa giá trị của nó là 0,1μF=100nF hay có các tụ ghi là 4n7 thì có nghĩa giá trị của tụ đó chính là 4,7nF
Các loại tụ có dùng mã

Tụ thường
Mã số thường được dùng cho các loại tụ có giá trị nhỏ trong đó các giá trị được định nghĩa lần lượt như sau:
- Giá trị thứ 1 là số hàng chục
- Giá trị thứ 2 là số hàng đơn vị
- Giá trị thứ 3 là số số không nối tiếp theo giá trị của số đã tạo từ giá trị 1 và 2.Giá trị của tụ được đọc theo chuẩn là giá trị picro Fara (pF)
- Chữ số đi kèm sau cùng đó là chỉ giá trị sai số của tụ.
Ví dụ: tụ ghi giá trị 102 thì có nghĩa là 10 và thêm 2 số 0 đằng sau =1000pF = 1nF chứ không phải 102pF
Hoặc ví dụ tụ 272J thì có nghĩa là 2700pF=2,7nF và sai số là 5%
Tụ có dùng mã màu

Tụ dùng mã màu
Sử dụng chủ yếu trên các tụ loại polyester trong rất nhiều năm. Hiện nay các loại tụ này đã không còn bán trên thị trường nữa nhưng chúng vẫn tồn tại trong khá nhiều các mạch điện tử cũ. Màu được định nghĩa cũng tương tự như đối với màu trên điện trở. 3 màu trên cùng lần lượt chỉ giá trị tụ tính theo pF, màu thứ 4 là chỉ dung sai và màu thứ 5 chỉ ra giá trị điện áp.
Ví dụ tụ có màu nâu/đen/cam có nghĩa là 10000pF= 10nF= 0.01uF.
Chú ý rằng ko có khoảng trống nào giữa các màu nên thực tế khi có 2 màu cạnh nhau giống nhau thì nó tạo ra một mảng màu rộng. Ví dụ Dải đỏ rộng/vàng= 220nF=0.22uF
Tụ Polyester
Ngày nay, loại tụ này cũng hiếm khi được sử dụng. Giá trị của các loại tụ này thường được in ngay trên tụ theo giá trị pF. Tụ này có một nhược điểm là dễ bị hỏng do nhiệt hàn nóng. Chính vì thế khi hàn các loại tụ này người ta thường có các kỹ thuật riêng để thực hiện hàn, tránh làm hỏng tụ.

Tụ polyester

Tụ điện biến đổi

Tụ điện biến đổi thường được sử dụng trong các mạch điều chỉnh radio và chúng thường được gọi là tụ xoay. Chúng thường có các giá trị rất nhỏ, thông thường nằm trong khoảng từ 100pF đến 500pF.

Tụ xoay
Rất nhiều các tụ xoay có vòng xoay ngắn nên chúng không phù hợp cho các dải biến đổi rộng như là điện trở hoặc các chuyển mạch xoay. Chính vì thế trong nhiều ứng dụng, đặc biệt là trong các mạch định thời hay các mạch điều chỉnh thời gian thì người ta thường thay các tụ xoay bằng các điện trở xoay và kết hợp với 1 giá trị tụ điện xác định.

Tụ chặn

Tụ chặn là các tụ xoay có giá trị rất nhỏ. Chúng thường được gắn trực tiếp lên bản mạch điẹn tử và điều chỉnh sau khi mạch đã được chế tạo xong. Tương tự các biến trở hiện này thì khi điều chỉnh các tụ chặn này người ta cũng dùng các tuốc nơ vít loại nhỏ để điều chỉnh. Tuy nhiên do giá trị các tụ này khá nhỏ nên khi điều chỉnh, người ta thường phải rất cẩn thận và kiên trì vì trong quá trình điều chỉnh có sự ảnh hưởng của tay và tuốc nơ vít tới giá trị tụ.

Tụ chặn
Các tụ chặn này thường có giá trị rất nhỏ, thông thường nhỏ hơn khoảng 100pF. Có điều đặc biệt là không thể giảm nhỏ được các giá trị tụ chặn về 0 nên chúng thường được chỉ định với các giá trị tụ điện tối thiểu, khoảng từ 2 tới 10 pF.

Cuộn cảm

Inductor.gif
Tương tự như đối với điện trở, trên thế giới có một số loại cuộn cảm có cấu trúc tương tự như điện trở. Quy định màu và cách đọc màu đều tương tự như đối với các điện trở.
Tuy nhiên, do các giá trị của các cuộn cảm thường khá linh động đối với yêu cầu thiết kế mạch cho nên các cuộn cảm thường được tính toán và quấn theo số vòng dây xác định. Với mỗi loại dây, với mỗi loại lõi khác nhau thì giá trị cuộn cảm sẽ khác nhau. Trong phần giáo trình này không đề cập cụ thể tới cách tính toán và quấn các cuộn cảm khác nhau. Phần này sẽ được đề cập cụ thể trong phần sách sau này.

Một số các phương pháp kiểm tra thông thường

Để kiểm tra các giá trị tụ điện, cuộn cảm hoặc điện trở thì thông thường mọi người sử dụng các đồng hồ đo đa năng. Hiện nay, có các loại đồng hồ đo đa năng có chức năng đo chính xác các giá trị cuộn cảm, tụ điện và điện trở, điện áp, dòng điện, thậm chí xác định transitor và điốt. Chính vì thế, trong phần này, tôi không đề cập tới các phương pháp kiểm tra cũ (khi dùng đồng hồ cơ/kim) như trước đây.

Tóm tắt chương

Trong chương này, các linh kiện điện tử cơ bản đã được trình bày một cách tương đối cụ thể. Yêu cầu duy nhất đối với người đọc đó là sau khi đọc chương này có thể nắm bắt được và nhận biết được các linh kiện điện tử cơ bản trước khi tìm hiểu và đi sâu hơn vào lĩnh vực điện tử. Yêu cầu nắm vững của phần chương này đó là phân biệt được các linh kiện cơ bản như điện trở, tụ điện, các phương pháp đọc điện trở và cao hơn nữa đó chính là khả năng đọc được giá trị của điện trở, tụ điện,...mà không cần phải tra cứu. Để đạt được điều này, yêu cầu đối với người đọc là phải thực hành so sánh và đọc giá trị các linh kiện thường xuyên.

ĐIỆN TỬ XƯA VÀ NAY

By // Không có nhận xét nào:
Lắp ráp điện tử hay còn gọi là PCBA (Printed Circuit Board Assembly) là một ngành công nghiệp phát triển vượt bậc mà trong đó phát minh ra PCB và cho thương mại hóa PCB đóng một vai trò quyết định. Lắp ráp điện tử dựa trên PCB gọi là PCBA.
Nhằm đưa ra một bức tranh khái quát về lịch sử phát triển của ngành lắp ráp điện tử trên thế giới qua đó hình dung con đường hình thành tên gọi PCBA, xin giới thiệu các quá trình phát triển ngành lắp ráp điện tử đã trải qua với các giai đoạn chính như sau:
Công nghệ Point To Point
Công nghệ Auto – Sembly
Công nghệ AI  (Auto – Insert hay Through – Hole Technology)
Công nghệ SMT (Surface Mount Technology hay Auto – Mount )
1. Công nghệ Point To Point
Là phương thức ráp mạch điện có từ trước năm 1950 Point to point được xây dựng trên những trạm rời rạc, các trạm này làm bằng đồng mạ kẽm được ghép cố định và cách ly bằng barkelite trên một kết cấu sườn cơ khí khác còn gọi là chassis
Chassis được xây dựng trước, rồi đến các trạm được gắn lên bằng cách tán rivet hoặc bắt ốc vít, các biến áp, linh kiện lớn, chân đế cắm đèn chân không cũng được lần lượt gắn trên chassis này, sau đó chúng được kết kối với nhau bằng các chuyên gia lắp ráp và công việc này được thực hiện hoàn toàn bằng tay với sự kết hợp của thêm của các dây nối
Kỹ thuật này còn được tiếp tục sử dụng ngay cả khi PCB đã được thương mại hóa bởi khi đó mạch điện tử còn lấy đèn chân không điện tử làm cơ sở khuyếch đại, giai đoạn này có một sự cố gây cho PCB dòn dễ vỡ là do đèn chân không phát ra rất nhiều nhiệt nên kỹ thuật PCB không phát triển (sẽ nói thêm trong phần linh kiện ở chương sau), kỹ thuật này còn được sử dụng cho đến đầu những thập niên 70 thế kỷ trước và kể cả ngày nay trong các thiết bị được gọi là ampli Hi-End dựavào đèn chân không làm cơ sở khuyếch đại.

Point to point đòi hỏi người lắp ráp phải khéo tay, có hiểu biết ít nhiều về sơ đồmạch mới có thể lắp ráp được bên cạnh đó kỹ năng hàn tay cũng là một đòi hỏikhá cao để có thể hoàn thành sản phẩm và cuối cùng là gặp rất nhiều khó khăntrong triển khai sản xuất hàng loạt, point to point thích hợp hơn với sản xuất đơn chiếc hoặc hand make theo ý đồ thiết kế riêng

2. Công nghệ Auto – Sembly

Auto – Sembly gắn liền với lịch sử phát triển PCB (Printed Circuit Board), PCB được phát minh từ sớm đầu thế kỷ 20, năm 1903 bởi nhà phát minh người Đức, Albert Hanson, ông ép phẳng đồng trên một bảng cách điện, có nhiều lớp, vào năm 1904 Thomas Edison (Mỹ) thử nghiệm phương pháp mạ kim loại hóa học trên nền giấy lanh. Vào năm 1913 Arthur Berry (Anh) được cấp bằng phát minh PCB với phương pháp in và ăn mòn hóa học và cùng năm tại Hoa kỳ Max Schoop lấy bằng phát minh phương pháp bay hơi kim loại qua một mặt nạ để dính vào bề mặt board. Và vào năm 1927 Charles Durcase lấy bằng sáng chế PCB bằng phương pháp mạ điện kim loại.
Khoảng vào năm 1936, việc nhà phát minh người Áo, kỹ sư Paul Eisler làm việc tại Anh quốc dùng PCB như một linh kiện để làm ra chiếc radio lần đầu tiên ông là người mở màn cho việc sử dụng PCB.
Trong Đệ nhị thế chiến, quân đội Mỹ giữ bản quyền PCB trên nền sứ, họ đã sử dụng PCB cho mạch điện tử (kích nổ gần chạm) trong tên lửa đất đối không để bắn máy bay trong chiến tranh, sau chiến tranh vào năm 1948 người Mỹ cho thương mại hóa PCB ra thị trường, nhưng PCB vẫn chưa thực sự trở nên phổ biến được, vào giữa thập niên 1950 khi quân đội Mỹ phát triển kỹ thuật Auto – Sembly trên nền tảng PCB, PCB mới thực sự thương mại hóa.
Công nghệ này thực tế là gắn tay các linh kiện có chân xuyên qua lỗ khoan sẵntrên PCB, PCB đã gắn các linh kiện này sau đó được hàn nhúng vào bể chất hàn nóng chảy làm cho các chân linh kiện được hàn dính vào mạch in bằng đồng trên PCB, tức là hàn đồng loạt nhiều chân linh kiện cùng lúc
Công nghệ này có 04 công đoạn chính:
  1. Gắn bằng tay các linh kiện vào PCB, công đoạn này còn được gọi là gắn linh kiện bằng tay (Hand-mount, hand-insert)
  1. Đưa PCB đã có gắn các linh kiện ở trên nhúng vào bể chứa chất hàn đượcnóng chảy ở bề mặt có mạch đồng để hàn các chân linh kiện vào mạch in, công đoạn này còn gọi là hàn tự động hay hàn nhúng (dipping) về sau này để nâng cao chất lượng mối hàn bể chứa chất hàn nóng chảy được tạo sóng nên còn được gọi là hàn sóng (wave soldering)
  1. Sau khi hàn xong PCB muốn sử dụng được phải cắt bỏ bớt phần thừa dôi dư ra của chân linh kiện bởi vì muốn hàn tốt chân linh kiện phải có đủ độ dài cần thiết để chống hiện tượng trồi ngược (floating) linh kiện do lực đẩy Acsimet khi hàn nhúng, bởi vậy khi hàn xong chân thừa linh kiện vẫn khá dài và gây nguy cơ chập mạch không mong muốn nên buộc phải cắt ngắn, một hiện tượng xảy ra khi cắt chân thừa linh kiện là gây ứng lực lên chân linh kiện làm nứt mối hàn và quá trình oxi-hóa sẽ phát triển từ vết nứt này làm giảm tuổi thọ mối hàn, biện pháp khắc phục là quan sát bằng mắt, tìm các vết nứt hoặc có dấu hiệu nứt để hàn tay bổ sung , công đoạn này được gọi là cắt chân sửa lỗi (Touch-up)
  2. Kiểm tra, cân chỉnh board bằng các gá jig và các thiết bị hỗ trợ để đồng nhất theo một tiêu chuẩn cho hoàn chỉnh giai đoạn làm PCB và chuyển sang giai đoạn lắp ráp (cân chỉnh  hoàn chỉnh sản phẩm trong các vỏ, hộp máy).
Khác với Point to point, công nghệ auto- sembly không cần công nhân có trình độ hiểu biết về mạch điện tử, chỉ cần đọc hiểu bản vẽ và không mù màu là có thể lắpráp linh kiện vào PCB, công đoạn hàn đòi hỏi hiểu biết chút ít về kỹ thuật luyệnkim (Eutectic point), hóa chất phụ trợ hàn (flux), công đoạn cắt chân sửa lỗi đòi hỏi công nhân có kỹ năng hàn tay (hand soldering), khéo tay tuy nhiên không phải quá cao,
Công nghệ này giúp ngành điện tử có thể sản xuất hàng loạt sản phẩm tốt hơn rất nhiều so với công nghệ trước đây (thời điểm mới ra đời công nghệ này cuối thập niên 1950, tốc độ sản suất 03 radio/phút), tuy nhiên công nghệ này có một số khuyết điểm như do vẫn dùng tay gắn linh kiện nên tiềm ẩn nguy cơ ôxi-hóa chân linh kiện do tay cầm nắm trực tiếp vào linh kiện khi gắn và tác động lực (khi cắt chân) vào mối hàn gây nứt gãy mối hàn mà mắt thường khó phát hiện,
Với những điểm yếu đó cộng với xu hướng giải phóng con người khỏi công việc lao động chân tay mà người ta hướng đến hạn chế tay cầm nắm vào linh kiện, hạn chế tối đa việc cắt chân sửa lỗi gây tác nhân phụ cộng với xu hướng sử dụng mạch tích hợp (IC) tất yếu cần tránh hiện tượng tĩnh điện gây hư hỏng bộ phận này mà xu hướng dùng máy cắm thay cho con người công nghệ kế tiếp đó là cắm linh kiện xuyên lỗ tự động Through hole technology (gọi tắt Thru – hole) còn gọi là Auto-Insert (gọi tắt AI).
3. Công nghệ Auto – Insertion (through – hole Technology)
Auto – sembly và “Thru – hole” (hay AI) ra đời thay thế hoàn toàn công nghệ Point to point, từ thời máy tính thế hệ máy tính thứ hai vào thập niên 1950 đến thập niên 1980  tất cả các linh kiện điển hình trên PCB đều linh kiện xuyên lỗ. Sau đó, khi kỹ thuật SMT lên ngôi AI mới mai một dần.
Thực chất công nghệ này là dùng cánh tay máy giả lập thao tác con người để cắm linh kiện xuyên qua lỗ khoan như công nghệ trước đây Auto-Sembly, chân linh kiện xuyên qua lỗ sang phía bên kia nơi sẽ được hàn nhúng hay hàn sóng, sẽ được "xén" ngắn vừa đủ và bẻ gấp lại hợp với mặt PCB một góc định trước, việc này có 3 tác dụng,
_ Thứ nhất cắt chân trước khi hàn tránh cắt chân lại,
_ Thứ hai việc lưu trữ sẽ dễ dàng hơn do chân linh kiện được gập giữ dính vào PCB,
_ Thứ ba có tác dụng kết hợp được với công nghệ SMT tiếp sau đó (SMT với keo dán) khi cần dán linh kiện ở bề mặt kia và buộc phải lật ngược PCB lên trên để thực hiện,
Do linh kiện xuyên lỗ có nhiều loại có kích thước cũng như hình dáng khác nhau nên người ta phải sắp xếp qui trình cắm theo một thứ tự gần như cố định (trong một vài trường hợp có thể đảo ngược nhưng không khuyến khích áp dụng) và duy nhất, để tránh sự va chạm không cần thiết của các tay máy với linh kiện cắm trước đó,
Một qui trình đầy đủ nhất được mô tả theo các qui trình cắm máy dưới đây theo nguyên tắc độ cao tăng dần (so với mặt PCB):
  1. Gắn eyelet (hay hoa thị, con tán, đinh ri vê… tùy vào thói quen gọi)
  2. Gắn kẽm (jumper wire)
  3. Gắn linh kiện đồng trục (axial)
  4. Gắn linh kiện bất đồng trục (radial)
  5. Gắn các kiện có hình dáng khác
  6. Gắn tay các linh kiện không thể cắm máy
  7. Hàn sóng
  8. Cắt chân sửa lỗi
  9. Kiểm tra, cân chỉnh
Được hỗ trợ bằng công nghệ CAM/CAD mà công nghệ này hạn chế rất nhiều lỗi sai sót do con người gây ra khi gắn bằng tay tuy nhiên nếu người nạp linh kiện sai thì sẽ có thể dẫn đến sai hàng loạt, do hình dáng đa dạng của linh kiện mà cơ cấu cơ khí thi hành phức tạp và khó điều chỉnh đòi hỏi kỹ thuật viên cân, canh chỉnh máy phải nhạy bén và nhiều kinh nghiệm để thực hiện công tác duy tu bảo dưỡng cũng như sửa chữa máy cắm
Kết cấu hình dáng bên ngoài các chủng loại linh kiện khác nhau mà công nghệ này chia nhỏ công đoạn ra để gắn theo nhóm hình dáng bên ngoài mà chúng ta có trật tự cắm có thể là duy nhất, đây cũng là điểm khó của công nghệ này khi cần cân bằng năng suất giữa các máy.
Do bị gấp chân rồi hàn phủ lên cộng với độ nghiêng của chân linh kiện với PCB và không cần cắt chân nên mối hàn này tốt hơn nhiều, tuy nhiên đây cũng là điểm khó khăn cho việc sửa chữa sau này, nếu không đủ kỹ năng sẽ rất dễ gây hỏng mạch in khi tháo thay linh kiện
Thực tế vẫn còn phải cắt chân sửa lỗi nhưng số lượng còn lại không nhiều do đó công việc sửa lỗi ít phức tạp hơn nhiều
Công nghệ ngày càng phát triển, chức năng của sản phẩm điện tử càng nhiều và tinh vi hơn đòi hỏi linh kiện càng thu nhỏ đi, board mạch cũng dày đặc linh kiện hơn, cũng như cần nhỏ gọn hơn, vì thế mà đầu tiên linh kiện không còn có chân như trước (MELF Metal Electrode Leadless Face là chuyển biến đầu tiên) tiến đến linh kiện chỉ còn là những khối chữ nhật nhỏ gọi là CHIP, con người ban đầu vẫn dùng tay để gắn những chi tiết này, cho đến khi linh kiện nhỏ đến mức không thể dùng tay, cộng với nhu cầu sản lượng cao, mật độ cũng như số lượng lớn trên một PCB mà công nghệ dán bề mặt ra đời hoàn toàn dùng máy và con người chỉ đóng vai trò điều khiển máy móc thiết bị.
4. Công nghệ Auto – Mount hay SMT
Vào thập niên 1960, IBM tiên phong trong việc phát triển kỹ thuật này cho máy tính cở nhỏ để phục vụ chương trình không gian vũ trụ của Mỹ do yêu cầu cần thu nhỏ máy tính đặt trên các tên lửa để phóng vào không gian vũ trụ, như vậy do yêu cầu cần thu nhỏ mạch điện cũng như cần làm nhẹ đi kết cấu mạch điện tử mà kỹ thuật SMT ra đời tuy nhiên nó chỉ được trở nên phổ biến vào cuối thập niên 1980
Cũng như công nghệ Auto – Insert giả lập cánh tay máy thay người, SMT cũng thế dùng cánh tay máy để dán những linh kiện dạng CHIP lên PCB nên còn gọi là SMT (Surface Mount Technology)
Thực tế để thực hiện công tác này có nhiều công nghệ hỗ trợ kèm theo mới hình thành nên, ví dụ ở giai đoạn tồn tại cả hai Auto – Insert và SMT người ta sử dụng công nghệ dán keo (dispenser) để cố định vị CHIP trên PCB bên cạnh các chân linh kiện đã bẻ gập ở công nghệ Auto – Insert sau đó được hàn sóng (solder ware) cùng lúc với nhau, hay in kem hàn gắn CHIP kết hợp dán keo gắn CHIP đồng thời kết hợp Auto – Insert hàn bằng REFLOW và hàn sóng…v.v..
Các qui trình đầy đủ giai đoạn đầu như sau:
  1. Cắm eyelet (hay hoa thị, con tán, đinh ri vê… tùy vào thói quen gọi)
  2. Cắm kẽm (jumper wire)
  3. Cắm linh kiện đồng trục (axial)
  4. Cắm linh kiện bất đồng trục (radial)
  5. Cắm các kiện có hình dáng khác
  6. Lật mặt cắm CHIP dùng keo dán
  7. Chấm keo dán (dispenser)
  8. Dán CHIP
  9. Dán IC (nếu có)
  10. Reflow (hấp keo)
  11. Cắm tay các linh kiện không thể cắm máy
  12. Hàn sóng
  13. Cắt chân sửa lỗi
  14. Kiểm tra, cân chỉnh
Khi công nghệ thu nhỏ linh kiện đạt đến như ngày nay, người ta hầu như loại bỏ hoàn toàn khâu cắm xuyên lỗ và dán CHIP bằng keo, qui trình còn như sau:
  1. In kem hàn
  2. Dán CHIP
  3. Dán IC
  4. Reflow
Lật mặt kia và qui trình lập lại như sau:
  1. In kem hàn
  2. Dán CHIP
  3. Dán IC
  4. Reflow
  5. Hàn tay các linh kiện không thể dán (có thể là vài linh kiện xuyên lỗ)
Điểm yếu của trường hợp này là qua reflow lần thứ nhất có thể gây lỗi cho lần dán mặt sau và lần qua reflow lần sau gây anh hưởng đến mối hàn của lần hàn bằng reflow của lần trước
Vì thế mà hiện nay công nghệ cắm SMT có thể thực hiện việc in và dán cả hai mặt rồi qua reflow một lần duy nhất
Với mỗi một sự kết hợp giữa các công nghệ người ta luôn có một qui trình thích hợp, đồng thời khi phối hợp với nguyên vật liệu, công cụ, máy móc hỗ trợ đặc thù thì việc tổ chức sản xuất đòi hỏi kinh nghiệm, sự nhạy bén của người phụ trách kỹ thuật mà cho ra các qui trình thực tế khác nhau làm nên những sản phẩm đạt tiêu chuẩn cao cho các công ty, ví dụ để sản xuất board mềm (flexible board) người ta phải kết hợp các gá jig để hỗ trợ vì (giả sử) máy SMT chỉ cắm được PCB thông thường dày 1.6mm, cứng  trong khi board mềm có độ dày đạt tới có 0.09mm (super thin) và dẻo (có thể gấp lại được) 
Linh kiện càng thu nhỏ thì hiện nay đã đạt đến giới hạn mà việc in kem hàn khó có thể đáp ứng chất lượng và khó kiểm soát công nghệ nên hiện nay một số nhà sản xuất thiết bị cắm linh kiện đã cho ra các thiết bị dán linh kiện lên PCB bằng FLUX là chất kết dính.
Chất hàn đã được chuẩn bị trên các cực hay chân linh kiện, sau đó máy dán hút linh kiện này đưa chân linh kiện này nhúng vào FLUX (flux làm chất kết dính) rồi dán lên PCB cho qua reflow, chất hàn trên chân linh kiện chảy ra hàn dính lên mạch đồng PCB.
Có thể hiểu như cách áp dụng cho cách cắm loại IC BGA trong sửa chữa ngày nay.
Trong điều kiện phát triển công nghệ còn chưa cao ở Việt nam hiện nay, để sản xuất hành loạt sản phẩm với chi phí rẻ nên trên thực tế nhiều công ty vẫn còn áp dụng Auto – Sembly, hay phối hợp cả Au-to Insert với SMT glue, hoặc AI với cả SMT Glue và SMT solder paste, cũng có thể là AI với SMT solder paste, khi đó qui trình sẽ có thay đổi SMT trước AI sau (sẽ giải thích rõ hơn ở phần sau).
Các công ty nước ngoài với vốn nhiều, cần chất lượng và chủ trương sử dụng ít nhân viên nên đầu tư hiện đại thì áp dụng công nghệ SMT hiện đại hơn đa số họ chỉ dùng SMT solder paste.
Để hiểu và có thể nắm bắt công việc hiện tại, cũng như đi tắt đón đầu hay họctập, tìm hiểu và bổ sung thêm cho mình cách thức sản xuất mạch điện tử trên PCB trong các nhà máy tại Việt nam các công nhân kỹ thuật, kỹ thuật viên, kỹ sư muốn hiểu công nghệ này nên tìm hiểu toàn bộ các qui trình hiện đang tồn tại trong sảnxuất sản phẩm điện tử tại Việt nam, thì tài liệu này là một sự tham khảo góp phần cho mục đích trên.
Ngoài ra tài liệu này cũng giúp cho các nhà quản lý sản xuất, chất lượng có thể hiểu rõ qui trình công nghệ để góp phần nâng cao công tác quản lý sản xuất cũng như chất  lượng

Trong sản xuất thực tế các nhà máy còn đối mặt với các qui trình phụ, tuy là phụ nhưng các qui trình này đóng góp rất lớn vào việc đảm bảo chất lượng sản phẩmlàm ra, đó là các qui trình như xử lý‎‎ độ ẩm không khí, nhiệt độ môi trường lưu trữ/bảo quản linh kiện, bụi, qui trình chống tĩnh điện (anti-static), qui trình xử lý keo dán (glue, bond), xử lý kem hàn (solder paste) trước khi in, LFS, khuôn in (stencil, metal mask), biểu đồ nhiệt máy hàn sóng/reflow (profile), phun flux trong hàn sóng, lưu trữ/vận chuyển/đóng gói PCB thành phẩm/ bán thành phẩm, lưu trữ kem hàn/keo dán… Nên qui trình công nghệ lắp ráp điện tử trong công nghiệp ngày nay không thể chỉ quan tâm duy nhất đến việc chỉ làm sao gắn được linh kiện lên PCB tức chỉ có học SMT mà còn phải có các qui trình phụ bên ngoài nhằm mục đích nâng cao chất lượng.